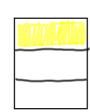
6.1 Completed Notes

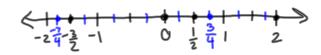
6.1: The Set of Rational Numbers

Definition: The <u>rational numbers</u> are all numbers of the form $\frac{a}{b}$, where a and b are integers with $b \neq 0$. We call a the <u>numerator</u> and b the <u>denominator</u>. We usually refer to these numbers in elementary school as fractions

Example: Draw a figure to represent $\frac{1}{2}$ and $\frac{1}{2}$.



Example: Draw the points $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$, and $\frac{1}{4}$ on a number line.



Definition: In the fraction $\frac{a}{b}$, if |a| < |b|, we call it a <u>proper fraction</u>. If $|a| \ge |b|$, we call it an <u>improper fraction</u>.

Example: List some proper and improper fractions

Question: Is every integer a rational number?
$$\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$

Yes, $3 = \frac{3}{1}, -4 = \frac{1}{1}$.

Definition: Two fractions that represent the same rational number are known

Example: Find fractions that are equivalent to $\frac{1}{2}$ by folding paper.

Fundamental Law of Fractions: If $\frac{a}{b}$ is any fraction and n is a nonzero integer, then $\frac{a}{b}=\frac{an}{bn}$.

Example: Show that $\frac{-7}{2}=\frac{7}{-2}$.

$$\frac{-7}{2} = \frac{-7 \cdot 1}{2 \cdot 1} = \frac{7}{2}$$

Example: Find a value for x such that $\frac{3}{12} = \frac{x}{72}$.

$$\frac{3}{12} = \frac{3.6}{12.6} = \frac{18}{72} \times = 18$$

Definition: A rational number $\frac{a}{b}$ is said to be insimplest form if b > 0 and $\gcd(a,b) = 1$.

Example: Simplify the fraction $\frac{45}{300}$ by using the GCD.

$$45=3^{2}\cdot 5^{0}$$

 $300=2^{2}\cdot 3^{0}5^{2}$ $GCD(45,300)=3.5=15$

$$\frac{46}{300} = \frac{3 \cdot 16}{20 \cdot 15} = \boxed{\frac{3}{20}}$$

6.1 Completed Notes

Theorem: Two fractions $\frac{a}{b}$ and $\frac{c}{d}$ are equivalent if and only if ad = bc. That is, we can cross multiply to check these.

$$\frac{a}{b} = \frac{a \cdot d}{b \cdot d} = \frac{ad}{bd}$$

$$\frac{c}{d} = \frac{c \cdot b}{d \cdot b} = \frac{bc}{bd}$$

Theorem: If a, b, and c are integers with b > 0, then $\frac{a}{b} > \frac{c}{b}$ if and only if

Example: Show that $\frac{9}{12} > \frac{6}{9}$.

$$0 = \frac{9}{12} = \frac{3 \cdot 3}{4 \cdot 3} = \frac{3}{4}$$

$$\frac{0}{12} = \frac{3.3}{4.3} = \frac{3}{4}$$

$$\frac{6}{9} = \frac{2.3}{3.3} = \frac{2}{3} \text{ (reduce)}$$

$$2\frac{9}{12} = \frac{9 \cdot 3}{12 \cdot 3} = \frac{27}{36}$$

$$\frac{6}{9} = \frac{6 \cdot 4}{9 \cdot 4} = \frac{24}{36}$$

$$\frac{6}{9} = \frac{6 \cdot 4}{9 \cdot 4} = \frac{24}{36}$$

$$\frac{3}{12} = \frac{9.9}{12 \cdot 9} = \frac{81}{108} \qquad \frac{6}{9} = \frac{6.12}{9.12} = \frac{72}{108}$$

$$\frac{6}{9} = \frac{6 \cdot 12}{9 \cdot 12} = \frac{72}{108}$$

Theorem: If a, b, c and d are integers with b, d > 0, then $\frac{a}{b} > \frac{c}{d}$ if and only if ad > bc.

Proof: $\frac{a}{b} = \frac{a \cdot d}{b \cdot d} = \frac{ad}{bd}$ $\frac{a}{b} > \frac{c}{d}$

$$\frac{a}{b} = \frac{a \cdot d}{b \cdot d} = \frac{ad}{bd}$$

$$\frac{c}{d} = \frac{c \cdot b}{d \cdot b} = \frac{bc}{bd}$$

